login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343018
a(n) is the smallest number m such that tau(m+1) = tau(m) + n.
3
2, 1, 5, 49, 11, 35, 23, 399, 47, 1849, 59, 143, 119, 1599, 167, 575, 179, 1295, 239, 4355, 629, 2303, 359, 899, 959, 9215, 1007, 39999, 719, 20735, 839, 5183, 1799, 46655, 1259, 36863, 1679, 7055, 3023, 986049, 2879, 3599, 6479, 82943, 2519, 193599, 3359, 207935
OFFSET
0,1
COMMENTS
tau(m) = the number of divisors of m (A000005).
Sequences of numbers m such that tau(m+1) = tau(m) + n for 0 <= n <= 5:
n = 0: 2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, ... (A005237).
n = 1: 1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, ... (A055927).
n = 2: 5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, ... (A230115).
n = 3: 49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, ... (A230653).
n = 4: 11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, ... (A230654).
n = 5: 35, 169, 289, 529, 961, 1369, 2809, 3135, 4489, ... (A228453).
FORMULA
a(n) = A086550(n) - 1.
EXAMPLE
For n = 3; a(3) = 49 because 49 is the smallest number such that tau(50) = 6 = tau(49) + 3 = 3 + 3.
MATHEMATICA
d = Differences @ Table[DivisorSigma[0, n], {n, 1, 10^6}]; a[n_] := If[(p = Position[d, n]) != {}, p[[1, 1]], 0]; s = {}; n = 0; While[(a1 = a[n]) > 0, AppendTo[s, a1]; n++]; s (* Amiram Eldar, Apr 03 2021 *)
PROG
(Magma) Ax:=func<n|exists(r){m: m in[1..10^6] | #Divisors(m + 1) - #Divisors(m) eq n} select r else 0>; [Ax(n): n in [0..50]]
(PARI) a(n) = my(m=1); while (numdiv(m+1) != numdiv(m) + n, m++); m; \\ Michel Marcus, Apr 03 2021
(Python)
from itertools import count, pairwise
from sympy import divisor_count
def A343018(n): return next(m+1 for m, t in enumerate(pairwise(map(divisor_count, count(1)))) if t[1] == t[0]+n) # Chai Wah Wu, Jul 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 02 2021
STATUS
approved