Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 26 2022 01:34:58
%S 2,1,5,49,11,35,23,399,47,1849,59,143,119,1599,167,575,179,1295,239,
%T 4355,629,2303,359,899,959,9215,1007,39999,719,20735,839,5183,1799,
%U 46655,1259,36863,1679,7055,3023,986049,2879,3599,6479,82943,2519,193599,3359,207935
%N a(n) is the smallest number m such that tau(m+1) = tau(m) + n.
%C tau(m) = the number of divisors of m (A000005).
%C Sequences of numbers m such that tau(m+1) = tau(m) + n for 0 <= n <= 5:
%C n = 0: 2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, ... (A005237).
%C n = 1: 1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, ... (A055927).
%C n = 2: 5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, ... (A230115).
%C n = 3: 49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, ... (A230653).
%C n = 4: 11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, ... (A230654).
%C n = 5: 35, 169, 289, 529, 961, 1369, 2809, 3135, 4489, ... (A228453).
%F a(n) = A086550(n) - 1.
%e For n = 3; a(3) = 49 because 49 is the smallest number such that tau(50) = 6 = tau(49) + 3 = 3 + 3.
%t d = Differences @ Table[DivisorSigma[0, n], {n, 1, 10^6}]; a[n_] := If[(p = Position[d, n]) != {}, p[[1, 1]], 0]; s = {}; n = 0; While[(a1 = a[n]) > 0, AppendTo[s, a1]; n++]; s (* _Amiram Eldar_, Apr 03 2021 *)
%o (Magma) Ax:=func<n|exists(r){m: m in[1..10^6] | #Divisors(m + 1) - #Divisors(m) eq n} select r else 0>; [Ax(n): n in [0..50]]
%o (PARI) a(n) = my(m=1); while (numdiv(m+1) != numdiv(m) + n, m++); m; \\ _Michel Marcus_, Apr 03 2021
%o (Python)
%o from itertools import count, pairwise
%o from sympy import divisor_count
%o def A343018(n): return next(m+1 for m, t in enumerate(pairwise(map(divisor_count,count(1)))) if t[1] == t[0]+n) # _Chai Wah Wu_, Jul 25 2022
%Y Cf. A000005 (tau), A080371, A080372, A086550, A340799, A343019, A343020.
%K nonn
%O 0,1
%A _Jaroslav Krizek_, Apr 02 2021