OFFSET
1,1
COMMENTS
Numbers k such that A051950(k+1) = 3.
k or k+1 is a perfect square. - David A. Corneth, Feb 16 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 90 terms from Harvey P. Dale)
EXAMPLE
99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.
MATHEMATICA
Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &]
Position[Differences[DivisorSigma[0, Range[300400]]], 3]//Flatten (* Harvey P. Dale, Jun 30 2022 *)
PROG
(PARI) isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ Michel Marcus, Oct 27 2013
(Python)
from sympy import divisor_count as tau
from itertools import count, islice
def agen(): # generator of terms, using comment by David A. Corneth
for m in count(1):
mm = m*m
tmm = tau(mm)
if tmm - tau(mm-1) == 3: yield mm-1
if tau(mm+1) - tmm == 3: yield mm
print(list(islice(agen(), 36))) # Michael S. Branicky, Feb 16 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 27 2013
EXTENSIONS
More terms from Michel Marcus, Oct 27 2013
STATUS
approved