login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230653
Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).
6
49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, 21903, 23715, 29583, 30975, 38024, 43263, 58563, 60515, 71824, 74528, 110223, 130321, 136899, 145924, 150543, 154449, 165649, 181475, 216224, 224675, 233288, 243049, 256035, 258063, 265225, 294849, 300303
OFFSET
1,1
COMMENTS
Numbers k such that A051950(k+1) = 3.
Numbers k such that A049820(k) - A049820(k+1) = 2.
k or k+1 is a perfect square. - David A. Corneth, Feb 16 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 90 terms from Harvey P. Dale)
EXAMPLE
99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.
MATHEMATICA
Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &]
Position[Differences[DivisorSigma[0, Range[300400]]], 3]//Flatten (* Harvey P. Dale, Jun 30 2022 *)
PROG
(PARI) isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ Michel Marcus, Oct 27 2013
(Python)
from sympy import divisor_count as tau
from itertools import count, islice
def agen(): # generator of terms, using comment by David A. Corneth
for m in count(1):
mm = m*m
tmm = tau(mm)
if tmm - tau(mm-1) == 3: yield mm-1
if tau(mm+1) - tmm == 3: yield mm
print(list(islice(agen(), 36))) # Michael S. Branicky, Feb 16 2024
CROSSREFS
Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1), A230115 (numbers n such that tau(n+1) - tau(n) = 2), A000005.
Sequence in context: A235578 A161689 A354342 * A019547 A228878 A067673
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 27 2013
EXTENSIONS
More terms from Michel Marcus, Oct 27 2013
STATUS
approved