login
Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).
6

%I #29 Feb 16 2024 17:25:42

%S 49,99,1023,1681,1935,2499,8649,9603,20449,21903,23715,29583,30975,

%T 38024,43263,58563,60515,71824,74528,110223,130321,136899,145924,

%U 150543,154449,165649,181475,216224,224675,233288,243049,256035,258063,265225,294849,300303

%N Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).

%C Numbers k such that A051950(k+1) = 3.

%C Numbers k such that A049820(k) - A049820(k+1) = 2.

%C k or k+1 is a perfect square. - _David A. Corneth_, Feb 16 2024

%H David A. Corneth, <a href="/A230653/b230653.txt">Table of n, a(n) for n = 1..10000</a> (first 90 terms from Harvey P. Dale)

%e 99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.

%t Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &]

%t Position[Differences[DivisorSigma[0,Range[300400]]],3]//Flatten (* _Harvey P. Dale_, Jun 30 2022 *)

%o (PARI) isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ _Michel Marcus_, Oct 27 2013

%o (Python)

%o from sympy import divisor_count as tau

%o from itertools import count, islice

%o def agen(): # generator of terms, using comment by _David A. Corneth_

%o for m in count(1):

%o mm = m*m

%o tmm = tau(mm)

%o if tmm - tau(mm-1) == 3: yield mm-1

%o if tau(mm+1) - tmm == 3: yield mm

%o print(list(islice(agen(), 36))) # _Michael S. Branicky_, Feb 16 2024

%Y Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1), A230115 (numbers n such that tau(n+1) - tau(n) = 2), A000005.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Oct 27 2013

%E More terms from _Michel Marcus_, Oct 27 2013