login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of product_{k=1..n-1} (1 + 1/prime(k)).
8

%I #15 Feb 14 2014 07:50:27

%S 1,2,1,5,35,385,715,12155,46189,1062347,30808063,955049953,1859834119,

%T 76253198879,298080686527,14009792266769,742518990138757,

%U 43808620418186663,86204059532560853,339745411098916303,24121924188023057513,47591904479072518877,3759760453846728991283

%N Denominator of product_{k=1..n-1} (1 + 1/prime(k)).

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.

%H Vincenzo Librandi, <a href="/A236436/b236436.txt">Table of n, a(n) for n = 1..200</a>

%H J. Sondow and E. Weisstein, <a href="http://mathworld.wolfram.com/MertensTheorem.html">MathWorld: Mertens Theorem</a>

%F A236435(n+1) / a(n+1) = A072045(n)/A072044(n) / A038110(n+1)/A060753(n+1) because 1+x = (1-x^2) / (1-x).

%F A236436(n) / a(n) = product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens' theorem.

%e (1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has denominator a(5) = 35.

%t Denominator@Table[Product[1 + 1/Prime[k], {k, 1, n - 1}], {n, 1, 23}]

%Y Cf. A038110, A060753, A072044, A072045, A236435.

%K nonn,frac

%O 1,2

%A _Jonathan Sondow_, Feb 01 2014