login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A356094
a(n) = denominator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.
2
2, 3, 15, 35, 231, 5005, 255255, 1616615, 10140585, 462120945, 6685349671, 1236789689135, 30425026352721, 311494317420715, 13367169186706335, 1253429172199617105, 33151040519900217915, 3909612711980232366109, 119065478046670712967865, 7970583287524270870963077
OFFSET
1,1
COMMENTS
See A356093 for details.
LINKS
MATHEMATICA
primorial[n_] := Product[Prime[i], {i, 1, n}]; Denominator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 20}]]
PROG
(PARI) a(n) = denominator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
(Python)
from math import gcd
from sympy import primorial, prime
def A356094(n): return (p:=primorial(n))//gcd(p, prime(n)-1) # Chai Wah Wu, Jul 26 2022
CROSSREFS
Cf. A002110, A356093 (numerators).
Similar sequences: A038111, A338560, A340819, A341432, A342451, A342480.
Sequence in context: A342867 A060753 A241198 * A296296 A143880 A037388
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Jul 26 2022
STATUS
approved