OFFSET
0,8
COMMENTS
We apply the following substitutions to transform T(m) into T(m+1):
t
/ \
/ \
t 2*t-u 2*t-v
/ \ ___\ / \ / \
/ \ / / \ / \
u-----v 2*u-t t+u+v 2*v-t
/ \ / \ / \
/ \ / \ / \
u---2*u-v--2*v-u--v
and:
u---2*u-v--2*v-u--v
\ / \ / \ /
\ / \ / \ /
u-----v 2*u-t t+u+v 2*v-t
\ / ___\ \ / \ /
\ / / \ / \ /
t 2*t-u 2*t-v
\ /
\ /
t
T(m) has 3^m+1 rows.
All terms are odd.
As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).
LINKS
Rémy Sigrist, Colored representation of T6 (the color is function of T(6)(n, k))
Rémy Sigrist, Representation of the multiples of 3 in T(7)
Rémy Sigrist, Representation of the negative terms in T(7)
Rémy Sigrist, PARI program
Rémy Sigrist, Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp, arXiv:2301.06039 [math.CO], 2023.
EXAMPLE
Triangle T(0) is:
1
1 1
Triangle T(1) is:
1
1 1
1 3 1
1 1 1 1
Triangle T(2) is:
1
1 1
1 3 1
1 1 1 1
1 -1 5 -1 1
1 5 5 5 5 1
1 -1 5 3 5 -1 1
1 1 5 5 5 5 1 1
1 3 1 -1 5 -1 1 3 1
1 1 1 1 1 1 1 1 1 1
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Rémy Sigrist, Jul 26 2022
STATUS
approved