login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356093
a(n) = numerator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.
2
1, 1, 2, 1, 1, 2, 8, 3, 1, 2, 1, 6, 4, 1, 1, 2, 1, 2, 1, 1, 12, 1, 1, 4, 16, 10, 1, 1, 18, 8, 3, 1, 4, 1, 2, 5, 2, 27, 1, 2, 1, 6, 1, 32, 14, 3, 1, 1, 1, 2, 4, 1, 8, 25, 128, 1, 2, 9, 2, 4, 1, 2, 3, 1, 4, 2, 1, 8, 1, 2, 16, 1, 1, 2, 9, 1, 2, 6, 40, 4, 1, 2, 1
OFFSET
1,3
COMMENTS
f(n) = a(n)/A356094(n) is the asymptotic density of numbers k such that prime(n) = A053669(k) is the smallest prime not dividing k.
The asymptotic mean of A053669 is 2.9200509773... (A249270) which is the weighted mean of the primes with f(n) as weights. The corresponding asymptotic standard deviation, which can be evaluated from the second raw moment Sum_{n>=1} f(n) * prime(n)^2, is 2.8013781465... .
LINKS
FORMULA
a(n) = 1 iff prime(n) is in A039787.
Let f(n) = a(n)/A356094(n):
f(n) = A006093(n)/A002110(n).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} f(n) * prime(n) = A249270.
EXAMPLE
Fractions begin with 1/2, 1/3, 2/15, 1/35, 1/231, 2/5005, 8/255255, 3/1616615, 1/10140585, 2/462120945, ...
MATHEMATICA
primorial[n_] := Product[Prime[i], {i, 1, n}]; Numerator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 100}]]
PROG
(PARI) a(n) = numerator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
(Python)
from math import gcd
from sympy import prime, primorial
def A356093(n): return (p:=prime(n)-1)//gcd(p, primorial(n)) # Chai Wah Wu, Jul 26 2022
CROSSREFS
Cf. A002110, A006093, A039787, A053669, A249270, A356094 (denominators).
Similar sequences: A038110, A338559, A340818, A341431, A342450, A342479.
Sequence in context: A058316 A082386 A336521 * A233308 A028306 A111259
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Jul 26 2022
STATUS
approved