login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233308
Number A(n,k) of tilings of a k X k X n box using k*n bricks of shape k X 1 X 1; square array A(n,k), n>=0, k>=1, read by antidiagonals.
7
1, 1, 1, 1, 2, 1, 1, 2, 9, 1, 1, 2, 4, 32, 1, 1, 2, 4, 21, 121, 1, 1, 2, 4, 8, 92, 450, 1, 1, 2, 4, 8, 45, 320, 1681, 1, 1, 2, 4, 8, 16, 248, 1213, 6272, 1, 1, 2, 4, 8, 16, 93, 1032, 4822, 23409, 1, 1, 2, 4, 8, 16, 32, 668, 3524, 18556, 87362, 1, 1, 2, 4, 8, 16, 32, 189, 3440, 13173, 70929, 326041, 1
OFFSET
0,5
LINKS
FORMULA
A(n,k) = 2^n = A000079(n) for k>n.
A(n,n) = A068156(n) for n>1.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 9, 4, 4, 4, 4, ...
1, 32, 21, 8, 8, 8, ...
1, 121, 92, 45, 16, 16, ...
1, 450, 320, 248, 93, 32, ...
1, 1681, 1213, 1032, 668, 189, ...
1, 6272, 4822, 3524, 3440, 1832, ...
1, 23409, 18556, 13173, 13728, 11976, ...
MAPLE
b:= proc(n, l) option remember; local d, t, k; d:= isqrt(nops(l));
if max(l[])>n then 0 elif n=0 then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(x->x-t, l))
else for k while l[k]>0 do od; b(n, subsop(k=d, l))+
`if`(irem(k, d)=1 and {seq(l[k+j], j=1..d-1)}={0},
b(n, [seq(`if`(h-k<d and h-k>=0, 1, l[h]), h=1..nops(l))]), 0)+
`if`(k<=d and {seq(l[k+d*j], j=1..d-1)}={0},
b(n, [seq(`if`(irem(h-k, d)=0, 1, l[h]), h=1..nops(l))]), 0)
fi
end:
A:= (n, k)-> `if`(k>n, 2^n, b(n, [0$k^2])):
seq(seq(A(n, 1+d-n), n=0..d), d=0..11);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{d, t, k}, d= Sqrt[Length[l]]; Which[ Max[l]>n, 0, n==0, 1, Min[l]>0, t=Min[l]; b[n-t, l-t], True, k=Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k->d]]+ If[Mod[k, d]==1 && Union[ Table[ l[[k+j]], {j, 1, d-1}]] == {0}, b[n, Table[ If [h-k<d && h-k>=0, 1, l[[h]] ], {h, 1, Length[l]}]], 0]+ If[k <= d && Union[ Table[ l[[k+d*j]], {j, 1, d-1}]] == {0}, b[n, Table[ If[ Mod[h-k, d] == 0, 1, l[[h]] ], {h, 1, Length[l]}]], 0] ] ]; a[n_, k_]:= If[k>n, 2^n, b[n, Array[0&, k^2]]]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
CROSSREFS
Columns k=1-6 give: A000012, A006253, A233289, A233291, A233294, A233424.
Diagonals include: A000079, A068156.
Sequence in context: A082386 A336521 A356093 * A028306 A111259 A304195
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 07 2013
STATUS
approved