login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of tilings of a k X k X n box using k*n bricks of shape k X 1 X 1; square array A(n,k), n>=0, k>=1, read by antidiagonals.
7

%I #25 Nov 16 2018 12:28:30

%S 1,1,1,1,2,1,1,2,9,1,1,2,4,32,1,1,2,4,21,121,1,1,2,4,8,92,450,1,1,2,4,

%T 8,45,320,1681,1,1,2,4,8,16,248,1213,6272,1,1,2,4,8,16,93,1032,4822,

%U 23409,1,1,2,4,8,16,32,668,3524,18556,87362,1,1,2,4,8,16,32,189,3440,13173,70929,326041,1

%N Number A(n,k) of tilings of a k X k X n box using k*n bricks of shape k X 1 X 1; square array A(n,k), n>=0, k>=1, read by antidiagonals.

%H Alois P. Heinz, <a href="/A233308/b233308.txt">Antidiagonals n = 0..17, flattened</a>

%F A(n,k) = 2^n = A000079(n) for k>n.

%F A(n,n) = A068156(n) for n>1.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 2, 2, 2, 2, ...

%e 1, 9, 4, 4, 4, 4, ...

%e 1, 32, 21, 8, 8, 8, ...

%e 1, 121, 92, 45, 16, 16, ...

%e 1, 450, 320, 248, 93, 32, ...

%e 1, 1681, 1213, 1032, 668, 189, ...

%e 1, 6272, 4822, 3524, 3440, 1832, ...

%e 1, 23409, 18556, 13173, 13728, 11976, ...

%p b:= proc(n, l) option remember; local d, t, k; d:= isqrt(nops(l));

%p if max(l[])>n then 0 elif n=0 then 1

%p elif min(l[])>0 then t:=min(l[]); b(n-t, map(x->x-t, l))

%p else for k while l[k]>0 do od; b(n, subsop(k=d, l))+

%p `if`(irem(k,d)=1 and {seq(l[k+j], j=1..d-1)}={0},

%p b(n, [seq(`if`(h-k<d and h-k>=0, 1, l[h]), h=1..nops(l))]), 0)+

%p `if`(k<=d and {seq(l[k+d*j], j=1..d-1)}={0},

%p b(n, [seq(`if`(irem(h-k, d)=0, 1, l[h]), h=1..nops(l))]), 0)

%p fi

%p end:

%p A:= (n, k)-> `if`(k>n, 2^n, b(n, [0$k^2])):

%p seq(seq(A(n, 1+d-n), n=0..d), d=0..11);

%t b[n_, l_] := b[n, l] = Module[{d, t, k}, d= Sqrt[Length[l]]; Which[ Max[l]>n, 0, n==0, 1, Min[l]>0, t=Min[l]; b[n-t, l-t], True, k=Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k->d]]+ If[Mod[k, d]==1 && Union[ Table[ l[[k+j]], {j, 1, d-1}]] == {0}, b[n, Table[ If [h-k<d && h-k>=0, 1, l[[h]] ], {h, 1, Length[l]}]], 0]+ If[k <= d && Union[ Table[ l[[k+d*j]], {j, 1, d-1}]] == {0}, b[n, Table[ If[ Mod[h-k, d] == 0, 1, l[[h]] ], {h, 1, Length[l]}]], 0] ] ]; a[n_, k_]:= If[k>n, 2^n, b[n, Array[0&, k^2]]]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from Maple *)

%Y Columns k=1-6 give: A000012, A006253, A233289, A233291, A233294, A233424.

%Y Diagonals include: A000079, A068156.

%K nonn,tabl

%O 0,5

%A _Alois P. Heinz_, Dec 07 2013