login
A060754
Absolute values of a certain cubic form at integer points (see Formula).
0
1, 7, 8, 13, 27, 29, 41, 43, 49, 56, 64, 71, 83, 91, 97, 104, 113, 125, 127, 139, 167, 169, 181, 189, 197, 203, 211, 216, 223, 232, 239, 251, 281, 287, 293, 301, 307, 328, 337, 343, 344, 349, 351, 377, 379, 392, 419, 421, 433, 448, 449, 461, 463, 491, 497, 503
OFFSET
1,2
COMMENTS
This sequence appears on p. 284 of Bryuno and Parusnikov, but the term 49 is missing. - Sean A. Irvine, Jul 31 2024
REFERENCES
A. D. Bryuno and V. I. Parusnikov, Comparison of various generalizations of continued fractions, Mat. Zametki, 61 (No. 3, 1997), 339-348; English translation in Math. Notes, 61 (1997), 278-286.
FORMULA
{abs((L1.X)*(L2.X)*(L3.X)): X in Z^3} where "." denotes dot product and L1=(1,-c3,-1-c2), L2=(1,-c1,-1-c3), L3=(1,-c2,-1-c1) with c1=2*cos(6*Pi/7), c2=2*cos(4*Pi/7), c3=2*cos(2*Pi/7). - Sean A. Irvine, Jul 31 2024
CROSSREFS
Sequence in context: A377332 A045765 A118068 * A196129 A286261 A136037
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 24 2001
EXTENSIONS
Missing 49 and more terms from Sean A. Irvine, Jul 31 2024
STATUS
approved