login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091138
E.g.f. A(x) satisfies A(A(x)) = x/(1-x)^2.
3
1, 2, 3, 6, 15, 0, 315, 1890, -82215, 708750, 41008275, -1385549550, -33403344975, 3426898600125, 26529571443375, -13516476003780750, 157765729690193625, 84230651703487038750, -3280917943856839411125, -799561865724400084556250, 62859004972802312944044375
OFFSET
1,2
COMMENTS
First non-integer term is a(30) = 16103946844555056574100466078211185438823359375/2.
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986
FORMULA
a(n) = n!* A030274(n)/A030275(n).
a(n) = n!*T(n,1), T(n,m)=1/2*(binomial(n+m-1,2*m-1)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012
MATHEMATICA
t[n_, m_] := t[n, m] = If[n == m, 1, 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := n!*t[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(2^(n-1)*T(n, 1), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */
CROSSREFS
Sequence in context: A091285 A109459 A118986 * A335260 A090983 A198684
KEYWORD
easy,frac,fini,sign
AUTHOR
Vladeta Jovovic, Dec 20 2003
EXTENSIONS
More terms from R. J. Mathar, Apr 28 2007
STATUS
approved