The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091138 E.g.f. A(x) satisfies A(A(x)) = x/(1-x)^2. 3
 1, 2, 3, 6, 15, 0, 315, 1890, -82215, 708750, 41008275, -1385549550, -33403344975, 3426898600125, 26529571443375, -13516476003780750, 157765729690193625, 84230651703487038750, -3280917943856839411125, -799561865724400084556250, 62859004972802312944044375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS First non-integer term is a(30) = 16103946844555056574100466078211185438823359375/2. LINKS R. J. Mathar, Table of n, a(n) for n = 1..28 Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 FORMULA a(n) = n!* A030274(n)/A030275(n). a(n) = n!*T(n,1), T(n,m)=1/2*(binomial(n+m-1,2*m-1)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012 MATHEMATICA t[n_, m_] := t[n, m] = If[n == m, 1, 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := n!*t[n, 1]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *) PROG (Maxima) T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1)); makelist(2^(n-1)*T(n, 1), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */ CROSSREFS Sequence in context: A091285 A109459 A118986 * A335260 A090983 A198684 Adjacent sequences: A091135 A091136 A091137 * A091139 A091140 A091141 KEYWORD easy,frac,fini,sign AUTHOR Vladeta Jovovic, Dec 20 2003 EXTENSIONS More terms from R. J. Mathar, Apr 28 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 00:51 EDT 2024. Contains 373362 sequences. (Running on oeis4.)