|
|
A091135
|
|
Number of Dyck paths of semilength n+4, having exactly two long ascents (i.e., ascents of length at least two).
|
|
1
|
|
|
2, 15, 69, 252, 804, 2349, 6455, 16962, 43086, 106587, 258153, 614520, 1441928, 3342489, 7667883, 17432766, 39321810, 88080615, 196083965, 434110740, 956301612, 2097152325, 4580180319, 9965666682, 21609054614, 46707769779
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Also number of ordered trees with n+4 edges, having exactly two branch nodes (i.e., vertices of outdegree at least two).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n^2 + 9*n + 20)/2 + 2^(n+1)*(n^2 + 3*n - 4).
G.f.: (2 - 3*x)/((1 - 2*x)^3*(1 - x)^3).
a(n) = 9*a(n-1) - 33*a(n-2) + 63*a(n-3) - 66*a(n-4) + 36*a(n-5) - 8*a(n-6) for n>5. - Colin Barker, Apr 09 2019
|
|
EXAMPLE
|
a(0)=2 because the only Dyck paths of semilength 4 that have exactly two long ascents are UUDDUUDD and UUDUUDDD (here U=(1,1) and D=(1,-1)).
|
|
MATHEMATICA
|
LinearRecurrence[{9, -33, 63, -66, 36, -8}, {2, 15, 69, 252, 804, 2349}, 30] (* Harvey P. Dale, Jul 01 2020 *)
|
|
PROG
|
(PARI) Vec((2 - 3*x) / ((1 - x)^3*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Apr 09 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|