OFFSET
1,8
LINKS
Dmitry Kruchinin and Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013.
N. J. A. Sloane, Transforms
FORMULA
a(n) = numerator(T(n,1)), T(n,m) = (1/2)*(binomial(n+m-1,2*m-1) - sum(i=m+1..n-1, T(n,i)*T(i,m))), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012
EXAMPLE
MATHEMATICA
t[n_, m_] := t[n, m] = If[ n == m , 1 , 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := t[n, 1] // Numerator; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(n, 1)), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */
CROSSREFS
KEYWORD
sign,frac
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Dec 19 2003
STATUS
approved