login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030274 Numerators of sequence {b(1), b(2), ...} which when COMPOSED with itself gives {1,2,3,...}. 3
1, 1, 1, 1, 1, 0, 1, 3, -29, 25, 263, -1481, -5493, 80505, 41549, -10584341, 14534299, 431101045, -1767586509, -43076199745, 322525095431, 1295531336537, -30908646610497, -734222129667169, 13259294064756895, 59705027567272273, -1617292893727823431, -1346735121534484263 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Table of n, a(n) for n=1..28.

Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$ , arXiv:1302.1986

N. J. A. Sloane, Transforms

FORMULA

a(n) = numerator(T(n,1)), T(n,m) = (1/2)*(binomial(n+m-1,2*m-1) - sum(i=m+1..n-1, T(n,i)*T(i,m))), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012

EXAMPLE

1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048, ... = A030274/A030275

MATHEMATICA

t[n_, m_] := t[n, m] = If[ n == m , 1 , 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := t[n, 1] // Numerator; Table[a[n], {n, 1, 28}] (* Jean-Fran├žois Alcover, Feb 26 2013, after Vladimir Kruchinin *)

PROG

(Maxima)

T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));

makelist(num(T(n, 1)), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */

CROSSREFS

Cf. A030275, A091138.

Sequence in context: A143234 A071195 A292625 * A249518 A194392 A189571

Adjacent sequences:  A030271 A030272 A030273 * A030275 A030276 A030277

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, Dec 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 02:20 EDT 2020. Contains 333392 sequences. (Running on oeis4.)