login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030274
Numerators of sequence {b(1), b(2), ...} which when COMPOSED with itself gives {1,2,3,...}.
5
1, 1, 1, 1, 1, 0, 1, 3, -29, 25, 263, -1481, -5493, 80505, 41549, -10584341, 14534299, 431101045, -1767586509, -43076199745, 322525095431, 1295531336537, -30908646610497, -734222129667169, 13259294064756895, 59705027567272273, -1617292893727823431, -1346735121534484263
OFFSET
1,8
LINKS
Dmitry Kruchinin and Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013.
N. J. A. Sloane, Transforms
FORMULA
a(n) = numerator(T(n,1)), T(n,m) = (1/2)*(binomial(n+m-1,2*m-1) - sum(i=m+1..n-1, T(n,i)*T(i,m))), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 14 2012
EXAMPLE
1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048, ... = A030274/A030275
MATHEMATICA
t[n_, m_] := t[n, m] = If[ n == m , 1 , 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := t[n, 1] // Numerator; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(n, 1)), n, 1, 10); /* Vladimir Kruchinin, Mar 14 2012 */
CROSSREFS
Sequence in context: A143234 A071195 A292625 * A249518 A194392 A189571
KEYWORD
sign,frac
EXTENSIONS
More terms from Vladeta Jovovic, Dec 19 2003
STATUS
approved