login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of sequence {b(1), b(2), ...} which when COMPOSED with itself gives {1,2,3,...}.
5

%I #27 Jan 13 2024 10:43:00

%S 1,1,1,1,1,0,1,3,-29,25,263,-1481,-5493,80505,41549,-10584341,

%T 14534299,431101045,-1767586509,-43076199745,322525095431,

%U 1295531336537,-30908646610497,-734222129667169,13259294064756895,59705027567272273,-1617292893727823431,-1346735121534484263

%N Numerators of sequence {b(1), b(2), ...} which when COMPOSED with itself gives {1,2,3,...}.

%H Dmitry Kruchinin and Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation A^{2^n}(x)=F(x)</a>, arXiv:1302.1986 [math.CO], 2013.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = numerator(T(n,1)), T(n,m) = (1/2)*(binomial(n+m-1,2*m-1) - sum(i=m+1..n-1, T(n,i)*T(i,m))), n > m, T(n,n)=1. - _Vladimir Kruchinin_, Mar 14 2012

%e 1, 1, 1/2, 1/4, 1/8, 0, 1/16, 3/64, -29/128, 25/128, 263/256, -1481/512, -5493/1024, 80505/2048, ... = A030274/A030275

%t t[n_, m_] := t[n, m] = If[ n == m , 1 , 1/2*(Binomial[n+m-1, 2*m-1] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}])]; a[n_] := t[n, 1] // Numerator; Table[a[n], {n, 1, 28}] (* _Jean-François Alcover_, Feb 26 2013, after _Vladimir Kruchinin_ *)

%o (Maxima)

%o T(n, m):=if n=m then 1 else 1/2*(binomial(n+m-1, 2*m-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));

%o makelist(num(T(n, 1)), n, 1, 10); /* _Vladimir Kruchinin_, Mar 14 2012 */

%Y Cf. A030275, A091138.

%K sign,frac

%O 1,8

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Dec 19 2003