login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091140
a(n) = 2*a(n-1) + 4*a(n-2) - 2*a(n-3) with initial terms 1, 3, 9.
5
1, 3, 9, 28, 86, 266, 820, 2532, 7812, 24112, 74408, 229640, 708688, 2187120, 6749712, 20830528, 64285664, 198394016, 612269632, 1889544000, 5831378496, 17996393728, 55539213440, 171401244800, 528966555904, 1632459664128, 5037983062272, 15547871669248
OFFSET
1,2
COMMENTS
One of 3 related sequences generated from finite difference operations. Let r(1)=s(1)=t(1)=1. Given r(n), s(n) and t(n), let f(x) = r(n) x^2 + s(n) x + t(n) and let r(n+1), s(n+1) and t(n+1) be the 0th, 1st and 2nd differences of f(x) at x=1. I.e., r(n+1) = f(1) = r(n)+s(n)+t(n), s(n+1) = f(2)-f(1) = 3r(n)+s(n) and t(n+1) = f(3)-2f(2)+f(1) = 2r(n). This sequence gives r(n).
FORMULA
Let v(n) be the column vector with elements r(n), s(n), t(n); then v(n) = [1 1 1 / 3 1 0 / 2 0 0] v(n-1).
The limit as n->infinity of a(n+1)/a(n) is the largest root of x^3 - 2x^2 - 4x + 2 = 0, which is about 3.086130197651494.
G.f.: -x*(x^2-x-1) / (2*x^3-4*x^2-2*x+1). - Colin Barker, May 21 2015
MATHEMATICA
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {2, 0, 0}}, n-1].{{1}, {1}, {1}})[[1, 1]]
LinearRecurrence[{2, 4, -2}, {1, 3, 9}, 30] (* Harvey P. Dale, May 18 2021 *)
PROG
(PARI) Vec(-x*(x^2-x-1)/(2*x^3-4*x^2-2*x+1) + O(x^100)) \\ Colin Barker, May 21 2015
CROSSREFS
Cf. s(n) = A091141(n), t(n) = A091142(n).
Sequence in context: A291257 A005354 A084084 * A052541 A024738 A263841
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 21 2003
STATUS
approved