|
|
A263841
|
|
Expansion of (1 - 2*x - x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x) - 1/(2*x).
|
|
1
|
|
|
1, 3, 9, 28, 87, 271, 843, 2619, 8123, 25153, 77763, 240054, 740017, 2278329, 7006093, 21520872, 66039651, 202462113, 620164491, 1898109900, 5805127269, 17741909157, 54188530641, 165405964227, 504601360389, 1538559689751, 4688812503053, 14282580916834, 43486805133903
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
D-finite with recurrence: -(n+1)*(n^2+n-3)*a(n) + 2*(n^3+3*n^2-4*n-3)*a(n-1) + 3*(n-1)*(n^2+3*n-1)*a(n-2) = 0. - R. J. Mathar, Feb 17 2016
E.g.f.: (1+x)*exp(x)*(BesselI(0,2*x) + BesselI(1,2*x)). (End)
a(n) = Sum_{k=0..n} A189911(k)*binomial(n,k).
a(n) = Sum_{k=0..n} (k+1)*binomial(n,k)*binomial(n-k,floor((n-k)/2)). (End)
|
|
MAPLE
|
A263841 := n -> add((k+1)*binomial(n, k)*binomial(n-k, iquo(n-k, 2)), k = 0 .. n):
|
|
MATHEMATICA
|
CoefficientList[Series[(1-2x-x^2)/(Sqrt[1+x] (1-3x)^(3/2) 2x)-1/(2x), {x, 0, 30}], x] (* Harvey P. Dale, Aug 21 2017 *)
|
|
PROG
|
(PARI) my(x='x+O('x^40)); Vec((1-2*x-x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x)-1/(2*x)) \\ Altug Alkan, Nov 10 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|