OFFSET
1,2
COMMENTS
The numerators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector.
LINKS
Johann Heinrich Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et Belles-Lettres, 1761, volume XVII, Berlin, 1768, pp. 265-322. See also.
Denis Roegel, Lambert's proof of the irrationality of Pi: Context and translation, hal-02984214 [math.HO], 2020.
FORMULA
EXAMPLE
arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
MATHEMATICA
Numerator @ CoefficientList[Series[ArcTanh[Tan[x]], {x, 0, 34}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, May 30 2020 *)
PROG
(PARI) a(n)={numerator((-1)^(n-1)*(polcoef(atan(tanh(x + O(x^(2*n)))), 2*n-1)))} \\ Andrew Howroyd, May 29 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Denis Roegel, May 28 2020
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, May 29 2020
STATUS
approved