login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262058 Least integer k>1 such that sqrt(k)/log(k) exceeds n. 3
2, 2, 289, 681, 1280, 2109, 3190, 4538, 6170, 8100, 10339, 12901, 15795, 19032, 22620, 26570, 30888, 35583, 40662, 46133, 52003, 58277, 64962, 72065, 79590, 87544, 95932, 104759, 114030, 123750, 133924, 144557, 155652, 167215, 179250, 191760 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Danny Rorabaugh, Table of n, a(n) for n = 1..10000

MAPLE

A262058 := proc(n)

    Digits := 30 ;

    for k from 2 do

        if evalf(sqrt(k) > n*log(k)) then

            return k;

        end if;

    end do:

end proc: # R. J. Mathar, Oct 22 2015

MATHEMATICA

f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > Sqrt[k]/Log[k], k++]; k]; f[1] = 2; Array[f, 50]

PROG

(PARI) a(n) = {my(k = 2); while(sqrt(k)/log(k) <= n, k++); k; } \\ Michel Marcus, Sep 10 2015

(Sage)

def A262058(n, d=50):

    (low, high) = (1, 2)

    while N(sqrt(high), digits=d) <= N(n*log(high), digits=d):

        high *= 2

    while low+1<high:

        mid = ceil((low+high)/2)

        if N(sqrt(mid), digits=d) <= N(n*log(mid), digits=d):

            low = mid

        else:

            high = mid

    return high # Danny Rorabaugh, Sep 26 2015

CROSSREFS

Cf. A088346, A262059, A262060.

Sequence in context: A068103 A335257 A119512 * A067091 A334599 A013556

Adjacent sequences:  A262055 A262056 A262057 * A262059 A262060 A262061

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Sep 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 15:26 EDT 2021. Contains 346428 sequences. (Running on oeis4.)