login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A262058
Least integer k>1 such that sqrt(k)/log(k) exceeds n.
3
2, 2, 289, 681, 1280, 2109, 3190, 4538, 6170, 8100, 10339, 12901, 15795, 19032, 22620, 26570, 30888, 35583, 40662, 46133, 52003, 58277, 64962, 72065, 79590, 87544, 95932, 104759, 114030, 123750, 133924, 144557, 155652, 167215, 179250, 191760
OFFSET
1,1
LINKS
MAPLE
A262058 := proc(n)
Digits := 30 ;
for k from 2 do
if evalf(sqrt(k) > n*log(k)) then
return k;
end if;
end do:
end proc: # R. J. Mathar, Oct 22 2015
MATHEMATICA
f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > Sqrt[k]/Log[k], k++]; k]; f[1] = 2; Array[f, 50]
PROG
(PARI) a(n) = {my(k = 2); while(sqrt(k)/log(k) <= n, k++); k; } \\ Michel Marcus, Sep 10 2015
(Sage)
def A262058(n, d=50):
(low, high) = (1, 2)
while N(sqrt(high), digits=d) <= N(n*log(high), digits=d):
high *= 2
while low+1<high:
mid = ceil((low+high)/2)
if N(sqrt(mid), digits=d) <= N(n*log(mid), digits=d):
low = mid
else:
high = mid
return high # Danny Rorabaugh, Sep 26 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 09 2015
STATUS
approved