login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088346
Smallest integer k for which exp(x) > x^n, for all x>=k, n>=3.
5
5, 9, 13, 17, 22, 27, 31, 36, 41, 46, 52, 57, 62, 68, 73, 79, 85, 90, 96, 102, 108, 114, 120, 126, 132, 138, 145, 151, 157, 164, 170, 176, 183, 189, 196, 202, 209, 215, 222, 229, 235, 242, 249, 255, 262, 269, 276, 283, 289, 296, 303, 310, 317, 324, 331, 338, 345, 352
OFFSET
3,1
COMMENTS
n=3 is the starting index since exp(x) > x^n for all x>=0 when n=1,2.
This function also cancels out a different set of numbers from the factorial than the primes using the asymptotic behavior of prime(n) and pi(n).
MATHEMATICA
a[n_] := Ceiling[E^-ProductLog[-1, -1/n]]; Table[a[n], {n, 3, 60}]
(* Also, the following code is from another definition of the *)
(* same sequence. *)
(* asymptotic prime like product function*) p[n_]=n!/(2*Product[Floor[i*Log[i]], {i, 2, Floor[n/Log[n]]}])
a0=Table[Floor[p[n]/p[n-1]], {n, 3, 500}];
(* composite like distribution*) Delete[Union[a0], 1];
(* pick of prime like numbers *) c=Table[If[a0[[n]]==1, n+2, 0], {n, 1, digits-3}];
d=Delete[Union[c], 1]
CROSSREFS
Cf. A190951 (Closest integer to the largest real x such that exp(x) = x^n)
Cf. A190952 (Largest integer k for which exp(k) < k^n)
Sequence in context: A314684 A247128 A314685 * A314686 A314687 A314688
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 07 2003
EXTENSIONS
Partially edited Charles R Greathouse IV, Nov 02 2009
Provided new name, and added 2 initial terms, by Shel Kaphan, May 20 2011
Added Mathematica function, by Shel Kaphan, May 23 2011
Reverted to starting at n=3, improved Mathematica code, by Shel Kaphan, May 24 2011
STATUS
approved