OFFSET
1,1
COMMENTS
Where A246778(i) first exceeds n, stated by p_i.
Similar to A245396.
Number of terms < 10^n: 4, 19, 41, 75, 120, 176, 242, 319, 407, 506, ..., .
Concerning Firoozbakht's Conjecture (1982): (prime(n+1))^(1/(n+1)) < prime(n)^(1/n), for all n = 1 or prime(n+1) < prime(n)^(1+1/n), which can be rewritten as: (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n. This suggests a weaker conjecture: (log(prime(n+1))/log(prime(n)))^n < e.
Prime index of a(n): 1, 1, 3, 4, 5, 5, 7, 7, 9, 10, 10, 12, 13, 16, 17, 19, 22, 24, 25, 31, 31, ..., .
All terms are unique for n > 21. Indices not unique: 1 & 2, 5 & 6, 7 & 8, 10 & 11 and 20 & 21.
The distribution of initial digits, 1...9, for a(n), n<508: 140, 91, 60, 50, 44, 36, 32, 27 and 26.
REFERENCES
Paulo Ribenboim, The little book Of bigger primes, second edition, Springer, 2004, p. 185.
LINKS
Farideh Firoozbakht and Robert G. Wilson v, Table of n, a(n) for n = 1..507
Alexei Kourbatov, Upper Bounds for Prime Gaps Related to Firoozbakht's Conjecture, arXiv:1506.03042 [math.NT], 2015.
Alexei Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
FORMULA
Log(y) ~= g + x^(1/2) where g = Euler's Gamma.
EXAMPLE
a(20) = 127 since for all primes less than the 31st prime, 127, p_k^(32/31) - p_k are less than 20.
a(100) = 38113,
a(200) = 2400407,
a(300) = 57189007,
a(400) = 828882731,
a(500) = 8748565643,
a(1000) = 91215796479037,
a(1064) = 246842748060263, limit of Mathematica by direct computation, i.e., the first Mathematica line.
MATHEMATICA
f[n_] := Block[{p = 2, k = 1}, While[n > p^(1 + 1/k) - p, p = NextPrime@ p; k++]; p]; Array[f, 60] (* or quicker *)
(* or quicker *) p = 2; i = 1; lst = {}; Do[ While[ p^(1 + 1/i) < n + p, p = NextPrime@ p; i++]; AppendTo[lst, p]; Print[{n, p}], {n, 100}]; lst
PROG
(PARI) a(n) = {i = 0; forprime(p=2, , i++; if (p^(1+1/i) - p > n, return (p)); ); } \\ Michel Marcus, Oct 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht and Robert G. Wilson v, Sep 11 2015
EXTENSIONS
a(2) corrected in b-file by Andrew Howroyd, Feb 22 2018
STATUS
approved