login
A144104
Primes p such that log(nextPrime(p))/log(p) is smaller for larger primes.
4
2, 3, 7, 13, 23, 31, 47, 53, 113, 139, 199, 211, 293, 317, 523, 1327, 1669, 1951, 2179, 2477, 2971, 3271, 4297, 4831, 5591, 5749, 5953, 6491, 6917, 7253, 8467, 9551, 9973, 10799, 11743, 12163, 12853, 15683, 16141, 19609, 31397, 34061, 35617, 35677
OFFSET
1,1
COMMENTS
log(nextPrime(p))/log(p) is another measure of the (relative) gap between consecutive primes. See A144105 for the primes at the upper end of the gaps.
The statement log(prime(k+1))/log(prime(k)) < 1 + 1/k, for k >= 1, is a rewrite of the Firoozbakht conjecture. - John W. Nicholson, Dec 06 2013
Firoozbakht conjecture: (prime(n+1))^(1/(n+1)) < prime(n)^(1/n), or
prime(n+1) < prime(n)^(1+1/n), which can be rewritten as: (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n. This suggests a weaker conjecture: (log(prime(n+1))/log(prime(n)))^n < e. - Daniel Forgues, Apr 28 2014
EXAMPLE
Examples for (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n < e:
(log(3)/log(2))^1 = 1.58... < (1+1/1)^1 = 2 < e;
(log(1361)/log(1327))^217 = 2.14... < (1+1/217)^217 = 2.712... < e;
(log(8501)/log(8467))^1059 = 1.59... < (1+1/1059)^1059 = 2.716... < e;
(log(35729)/log(35677))^3795 = 1.69... < (1+1/3795)^3795 = 2.717... < e. - Daniel Forgues, Apr 28 2014
MATHEMATICA
nn=10^5; ps=N[Log[Prime[Range[nn]]]]; ps=Rest[ps]/Most[ps]; k=1; t={}; While[k<nn/2, mx=Max[Take[ps, {k, Length[ps]}]]; pos=Position[Take[ps, {k, Length[ps]}], mx][[ -1, 1]]; AppendTo[t, Prime[pos+k-1]]; k=k+pos]; t
CROSSREFS
Sequence in context: A182047 A291544 A208149 * A088175 A271827 A298339
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 11 2008
STATUS
approved