login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262059
Least integer k such that k^(1/3)/log(k) exceeds n.
3
2, 4913, 29410, 96854, 236916, 484596, 879483, 1465239, 2289183, 3401984, 4857388, 6712006, 9025131, 11858570, 15276512, 19345406, 24133846, 29712478, 36153913, 43532644, 51924974, 61408954, 72064316, 83972419, 97216198, 111880113, 128050105, 145813554, 165259239, 186477301, 209559205
OFFSET
1,1
MAPLE
A262059val := proc(k)
Digits := 100 ;
evalf(root[3](k)/log(k)) ;
end proc:
A262059lims := proc(n, lowk, highk)
local vallow, valhigh, midk, valmid ;
vallow := A262059val(lowk) ;
valhigh := A262059val(highk) ;
if valhigh > n and vallow <= n and highk= lowk+1 then
return highk;
else
midk := floor((lowk+highk)/2) ;
valmid := A262059val(midk) ;
if valmid < n then
return procname(n, midk, highk) ;
else
return procname(n, lowk, midk) ;
end if;
end if;
end proc:
A262059 := proc(n)
local lowk, highk, p ;
if n = 1 then
return 2;
end if;
for p from 0 do
lowk := 10^p ;
highk := 10^(p+1) ;
if A262059val(highk) >=n then
return A262059lims(n, min(2, lowk), highk) ;
end if;
end do:
end proc: # R. J. Mathar, Oct 22 2015
MATHEMATICA
f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > k^(1/3)/Log[k], k++]; k]; f[1] = 2; Array[f, 40]
PROG
(PARI) a(n) = {my(k = 2); while(sqrtn(k, 3)/log(k) <= n, k++); k; } \\ Michel Marcus, Sep 10 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 09 2015
STATUS
approved