login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102036
Triangle, read by rows, where the terms are generated by the rule: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-3,k-1), with T(0,0)=1.
2
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 9, 15, 7, 1, 1, 12, 33, 28, 9, 1, 1, 15, 60, 81, 45, 11, 1, 1, 18, 96, 189, 161, 66, 13, 1, 1, 21, 141, 378, 459, 281, 91, 15, 1, 1, 24, 195, 675, 1107, 946, 449, 120, 17, 1, 1, 27, 258, 1107, 2349, 2673, 1742, 673, 153, 19, 1
OFFSET
0,5
COMMENTS
Row sums form A077939. This sequence was inspired by Luke Hanna.
Diagonal sums are A000078(n+3). - Philippe Deléham, Feb 16 2014
Riordan array (1/(1-x), x*(1+x+x^2)/(1-x)). - Philippe Deléham, Feb 16 2014
LINKS
Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee The k-nacci triangle and applications. Cogent Math. 4, Article ID 1333293, 13 p. (2017).
J. L. Ramírez, V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
FORMULA
G.f.: 1/(1-y-x*(1+y+y^2)). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..(n-k)} (Sum_{j=0..k} C(j,m-j)*C(k,j))*C(n-m,k). - Vladimir Kruchinin, Apr 21 2015
From Werner Schulte, Dec 07 2018: (Start)
G.f. of column k: Sum_{n>=0} T(n+k,k) * x^n = (1+x+x^2)^k / (1-x)^(k+1) = (1-x^3)^k / (1-x)^(2*k+1).
Let k >= 0 be some fixed integer and a_k(n) be multiplicative with a_k(p^e) = T(e+k,k) for prime p and e >= 0. Then we have the Dirichlet g.f.: Sum{n>0} a_k(n) / n^s = (zeta(s))^(2*k+1) / (zeta(3*s))^k. (End)
EXAMPLE
Generated by adding preceding terms in the triangle at positions that form the letter 'L':
T(n,k) =
T(n-3,k-1) +
T(n-2,k-1) +
T(n-1,k-1) + T(n-1,k).
Rows begin:
[1],
[1, 1],
[1, 3, 1],
[1, 6, 5, 1],
[1, 9, 15, 7, 1],
[1, 12, 33, 28, 9, 1],
[1, 15, 60, 81, 45, 11, 1],
[1, 18, 96, 189, 161, 66, 13, 1],
[1, 21, 141, 378, 459, 281, 91, 15, 1], ...
MAPLE
T:=(n, k)->add(add((binomial(j, m-j)*binomial(k, j))*binomial(n-m, k), j=0..k), m=0..n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Muniru A Asiru, Dec 11 2018
MATHEMATICA
T[n_, k_] := If[n < k || k < 0, 0, If[n == 0, 1, T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k - 1] + T[n - 3, k - 1]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
Table[Sum[Binomial[n-m, k]*Sum[Binomial[j, m-j]*Binomial[k, j], {j, 0, k}], {m, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 11 2018 *)
PROG
(PARI) {T(n, k)=if(n<k||k<0, 0, if(n==0, 1, T(n-1, k)+T(n-1, k-1)+T(n-2, k-1)+T(n-3, k-1)))}
(Maxima) T(n, k):=sum((sum(binomial(j, m-j)*binomial(k, j), j, 0, k))*binomial(n-m, k), m, 0, n-k); /* Vladimir Kruchinin, Apr 21 2015 */
(Magma) [[(&+[Binomial(n-m, k)*(&+[Binomial(j, m-j)*Binomial(k, j):j in [0..k]]): m in [0..n-k]]): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Dec 11 2018
(Sage) [[sum(binomial(n-m, k)*sum(binomial(j, m-j)*binomial(k, j) for j in (0..k)) for m in (0..n-k)) for k in (0..n)] for n in range(15)] # G. C. Greubel, Dec 11 2018
CROSSREFS
Sequence in context: A211350 A178867 A335256 * A121524 A361682 A103141
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 30 2004
STATUS
approved