login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121523
Number of up steps starting at an even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
2
1, 3, 10, 33, 103, 315, 941, 2770, 8051, 23171, 66138, 187486, 528365, 1481501, 4135756, 11500721, 31871625, 88054825, 242609585, 666783380, 1828452021, 5003697403, 13667302500, 37267071708, 101455834153, 275797332135
OFFSET
1,2
COMMENTS
a(n) = Sum(k*A121522(n,k), k=1..n). a(n)+A121525(n)=n*fibonacci(2n-1).
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.: z(1-3z+z^2+5z^3-5z^4)/[(1+z)(1-3z+z^2)^2*(1-z-z^2)].
a(n) ~ (5-sqrt(5)) * (3+sqrt(5))^n * n / (5 * 2^(n+2)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
a(3)=10 because we have (U)D(U)D(U)D, (U)D(U)UDD, (U)UDD(U)D, (U)UDUDD and (U)U(U)DDD, the up steps starting at even level being shown between parentheses (U=(1,1), D=(1,-1)).
MAPLE
G:=z*(1-3*z+z^2+5*z^3-5*z^4)/(1+z)/(1-3*z+z^2)^2/(1-z-z^2): Gser:=series(G, z=0, 34): seq(coeff(Gser, z, n), n=1..30);
MATHEMATICA
Rest[CoefficientList[Series[x*(1-3*x+x^2+5*x^3-5*x^4)/(1+x)/(1-3*x+x^2)^2 /(1-x-x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 05 2006
STATUS
approved