

A076758


n*(n+1)^2*(2+n)*(3+2*n)*(19+8*n)/180.


0



0, 9, 98, 516, 1870, 5369, 13132, 28560, 56772, 105105, 183678, 306020, 489762, 757393, 1137080, 1663552, 2379048, 3334329, 4589754, 6216420, 8297366, 10928841, 14221636, 18302480, 23315500, 29423745, 36810774, 45682308, 56267946, 68822945, 83630064
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Let M_n be the n X n matrix M_(i,j)=i^2j^2. Then the characteristic polynomial of M_n is x^n+a(n1)x^(n2)  Benoit Cloitre, Nov 30 2002


LINKS

Table of n, a(n) for n=0..30.
Index entries for linear recurrences with constant coefficients, signature (7,21,35,35,21,7,1).


FORMULA

G.f.: x*(x^3+19*x^2+35*x+9)/(x1)^7. [Colin Barker, Oct 22 2012]


MATHEMATICA

Table[n (n+1)^2(2+n)(3+2n)(19+8n)/180, {n, 0, 30}] (* or *) LinearRecurrence[ {7, 21, 35, 35, 21, 7, 1}, {0, 9, 98, 516, 1870, 5369, 13132}, 40] (* Harvey P. Dale, Dec 19 2017 *)


CROSSREFS

Sequence in context: A123821 A145509 A098782 * A085868 A147637 A057933
Adjacent sequences: A076755 A076756 A076757 * A076759 A076760 A076761


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Nov 14 2002


STATUS

approved



