login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076761
3-apexes of omega: numbers k such that omega(k-3) < omega(k-2) < omega(k-1) < omega(k) > omega(k+1) > omega(k+2) > omega(k+3), where omega(m) = the number of distinct prime factors of m.
1
104006, 272986, 557480, 706706, 757316, 835016, 908600, 948310, 995554, 1093730, 1181410, 1198406, 1212694, 1252510, 1253330, 1283710, 1352560, 1370915, 1428686, 1440880, 1452836, 1513730, 1524446, 1627444, 1654730, 1662310
OFFSET
1,1
COMMENTS
I call n a "k-apex" (or "apex of height k") of the arithmetical function f if n satisfies f(n-k) < ... < f(n-1) < f(n) > f(n+1) > .... > f(n+k).
LINKS
EXAMPLE
omega(104003), ..., omega(104006), ..., omega(104009) equal 1, 3, 4, 5, 3, 2, 1, respectively. Hence 104006 is a term of the sequence.
MATHEMATICA
omega[n_] := Length[FactorInteger[n]]; Select[Range[5, 10^6], omega[ # - 3] < omega[ # - 2] < omega[ # - 1] < omega[ # ] > omega[ # + 1] > omega[ # + 2] > omega[ # + 3] &]
okQ[{a_, b_, c_, d_, e_, f_, g_}]:=a<b<c<d>e>f>g; Flatten[ Position[ Partition[ PrimeNu[ Range[167*10^4]], 7, 1], _?(okQ[#]&)]]+3 (* Harvey P. Dale, Jul 27 2019 *)
PROG
(Magma) pd:=PrimeDivisors; f:=func<n|#pd(n-3) lt #pd(n-2) and #pd(n-2) lt #pd(n-1) and #pd(n-1) lt #pd(n)>; f1:=func<n|#pd(n) gt #pd(n+1) and #pd(n+1) gt #pd(n+2) and #pd(n+2) gt #pd(n+3)>; [k:k in [4..170000]|f(k) and f1(k)]; // Marius A. Burtea, Feb 18 2020
CROSSREFS
Cf. A001222.
Sequence in context: A210180 A136312 A205260 * A236007 A129241 A290535
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 13 2002
EXTENSIONS
a(10)-a(26) from Donovan Johnson, Feb 07 2009
STATUS
approved