login
A076764
n such that Omega(n-1) < Omega(n) < Omega(n+1), where Omega(m) = the number of prime factors of m, counting multiplicity.
1
62, 63, 74, 188, 194, 195, 207, 242, 255, 275, 278, 279, 314, 363, 374, 398, 399, 404, 422, 423, 455, 458, 483, 494, 495, 524, 539, 614, 615, 662, 663, 674, 692, 728, 734, 735, 747, 758, 759, 764, 782, 783, 854, 867, 890, 927, 935, 975, 998, 999
OFFSET
1,1
LINKS
EXAMPLE
Omega(61) = 1 < Omega(62) = 2 < Omega(63) = 3, so 62 is a 1-apex of Omega.
MAPLE
Res:= NULL: a:= numtheory:-bigomega(1): b:= numtheory:-bigomega(2):
for n from 3 to 1001 do
c:= numtheory:-bigomega(n);
if a < b and b < c then Res:= Res, n-1 fi;
a:= b; b:= c;
od:
Res; # Robert Israel, Oct 28 2018
MATHEMATICA
Select[Range[3, 10^3], Omega[ # - 1] < Omega[ # ] < Omega[ # + 1] &]
Flatten[Position[Partition[PrimeOmega[Range[1000]], 3, 1], _?(Min[ Differences[ #]]>0&), {1}, Heads->False]]+1 (* Harvey P. Dale, Nov 28 2015 *)
CROSSREFS
Sequence in context: A296766 A003635 A188631 * A367090 A345496 A214251
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 13 2002
EXTENSIONS
Edited by Robert Israel, Oct 28 2018
STATUS
approved