login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = v(n)/A000178(n), v = A093883 and A000178 = (superfactorials).
3

%I #29 Nov 26 2023 04:19:43

%S 1,3,30,1050,132300,61122600,104886381600,674943865596000,

%T 16407885372638760000,1515727634953623371280000,

%U 534621388490302221024396480000,722849817707190846398223943885440000,3759035907022704558524683975387453632000000

%N a(n) = v(n)/A000178(n), v = A093883 and A000178 = (superfactorials).

%H G. C. Greubel, <a href="/A203469/b203469.txt">Table of n, a(n) for n = 1..55</a>

%F a(n) = Product_{i=1..n} binomial(2n-i,i). - _Enrique Pérez Herrero_, Feb 20 2013

%F From _G. C. Greubel_, Aug 29 2023: (Start)

%F a(n) = (2^n/sqrt(Pi))^n*BarnesG(n+3/2)/(BarnesG(n+2)*BarnesG(3/2)).

%F a(n) = (n!/2^(n-1))*Product_{j=1..n-1} Catalan(j). (End)

%F a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^(n/2 + 1/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Nov 26 2023

%t (* First program *)

%t f[j_]:= j; z = 16;

%t v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]

%t d[n_]:= Product[(i-1)!, {i,n}]

%t Table[v[n], {n,z}] (* A093883 *)

%t Table[v[n+1]/v[n], {n,z-1}] (* A006963 *)

%t Table[v[n]/d[n], {n,20}] (* A203469 *)

%t (* Second program *)

%t Table[Product[Binomial[2*n-j,j], {j,n}], {n,20}] (* _G. C. Greubel_, Aug 29 2023 *)

%o (Magma) [(&*[Binomial(2*n-k,k): k in [1..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 29 2023

%o (SageMath) [product(binomial(2*n-j,j) for j in range(n)) for n in range(1, 20)] # _G. C. Greubel_, Aug 29 2023

%Y Cf. A000178, A006963, A076756, A093883, A296590.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 02 2012