login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203478
a(n) = v(n+1)/v(n), where v = A203477.
2
3, 30, 1080, 146880, 77552640, 161309491200, 1331771159347200, 43809944057885491200, 5753472333233985788313600, 3019422280481195741706977280000, 6335279362770913356551778761441280000
OFFSET
1,1
LINKS
FORMULA
a(n) = A028362(n+1) * 2^(n*(n-1)/2). - Charles R Greathouse IV, Feb 16 2021
a(n) = Product_{j=0..n-1} (2^j + 2^n). - G. C. Greubel, Aug 28 2023
MATHEMATICA
(* First program *)
f[j_]:= 2^(j-1); z = 13;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203477 *)
Table[v[n+1]/v[n], {n, z-1}] (* A203478 *)
Table[v[n]*v[n+2]/(2*v[n+1]^2), {n, 22}] (* A164051 *)
(* Second program *)
Table[Product[2^j +2^n, {j, 0, n-1}], {n, 20}] (* G. C. Greubel, Aug 28 2023 *)
PROG
(PARI) a(n)=prod(i=0, n-1, 2^i+2^n) \\ Charles R Greathouse IV, Feb 16 2021
(Magma) [(&*[2^j + 2^n: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
(SageMath) [product(2^j + 2^n for j in range(n)) for n in range(1, 21)] # G. C. Greubel, Aug 28 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved