login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203465
a(n) = A203305(n)/A000178(n) where A000178 are superfactorials.
1
1, 2, 24, 5376, 72253440, 192663508746240, 345230911480770991226880, 1436598918224589625071929521581588480, 48781096034575545526663437061892218092260229434572800
OFFSET
1,2
LINKS
R. Chapman, A polynomial taking integer values, Mathematics Magazine, 29 (1996), 121.
MATHEMATICA
f[j_]:= 2^j - 1; z = 10;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203305 *)
Table[v[n]/d[n], {n, z}] (* A203465 *)
PROG
(Magma) F:= Factorial; [1] cat [(&*[(&*[2^(k+1) - 2^(j): j in [1..k]])/Factorial(k): k in [1..n-1]]): n in [2..20]]; // G. C. Greubel, Sep 19 2023
(SageMath) f=factorial; [product(product(2^(k+1) - 2^j for j in range(1, k+1))//factorial(k) for k in range(1, n)) for n in range(1, 21)] // G. C. Greubel, Sep 19 2023
CROSSREFS
Cf. A203305.
Sequence in context: A242484 A088912 A342573 * A055462 A088600 A066120
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
EXTENSIONS
Name edited by Michel Marcus, May 17 2019
STATUS
approved