login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{2 <= i < j <= n+1} (i + j).
5

%I #21 Aug 29 2023 04:24:05

%S 1,5,210,105840,838252800,129459762432000,466521199899955200000,

%T 45727437650097816797184000000,

%U 139352822480378029387123167068160000000,14863555768518278744824500982673408262144000000000,61707340455179609358720715109663452970925870494515200000000000

%N a(n) = Product_{2 <= i < j <= n+1} (i + j).

%C Each term divides its successor, as (conjectured) in A102693. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203471.

%H G. C. Greubel, <a href="/A203470/b203470.txt">Table of n, a(n) for n = 1..36</a>

%F a(n) ~ sqrt(A) * 2^(n^2 + 5*n/2 + 41/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 71/24) / Pi, where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 08 2021

%F From _G. C. Greubel_, Aug 29 2023: (Start)

%F a(n) = Product_{j=2..n+1} Gamma(2*j)/Gamma(j+2).

%F a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2)/(Pi^(n/2)*Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)) ).

%F a(n) = (BarnesG(n+2)/2^n) * Product_{j=2..n+1} Catalan(j). (End)

%p a:= n-> mul(mul(i+j, i=2..j-1), j=3..n+1):

%p seq(a(n), n=1..12); # _Alois P. Heinz_, Jul 23 2017

%t (* First program *)

%t f[j_]:= j+1; z = 16;

%t v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]

%t d[n_]:= Product[(i-1)!, {i,n}]

%t Table[v[n], {n, z}] (* A203470 *)

%t Table[v[n+1]/v[n], {n, z-1}] (* A102693 *)

%t Table[v[n]/d[n], {n, 20}] (* A203471 *)

%t (* Second program *)

%t Table[Product[Gamma[2*j]/Gamma[j+2], {j,2,n+1}], {n,20}] (* _G. C. Greubel_, Aug 29 2023 *)

%o (Magma) [(&*[Factorial(2*k-1)/Factorial(k+1): k in [2..n+1]]): n in [1..20]]; // _G. C. Greubel_, Aug 29 2023

%o (SageMath) [product(gamma(2*k)/gamma(k+2) for k in range(2,n+2)) for n in range(1,20)] # _G. C. Greubel_, Aug 29 2023

%Y Cf. A000178, A102693, A203471.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 02 2012

%E Name edited by _Alois P. Heinz_, Jul 23 2017