

A134018


Let P(A) be the power set of an nelement set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x.


0



0, 1, 3, 10, 45, 226, 1113, 5230, 23565, 102826, 438273, 1836550, 7601685, 31183426, 127084233, 515429470, 2083077405, 8396552026, 33779262993, 135696871990, 544528258725, 2183337968626, 8749031918553, 35043178292110, 140313885993645, 561679104393226
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..25.
Ross La Haye, Binary Relations on the Power Set of an nElement Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. [Ross La Haye, Feb 22 2009]
Index entries for linear recurrences with constant coefficients, signature (10,35,50,24).


FORMULA

a(n) = (1/2)(4^n  3^(n+1) + 5*2^n  3) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,2).
G.f.: x*(17*x+15*x^2)/((1x)*(12*x)*(13*x)*(14*x)). [Colin Barker, Jul 29 2012]


EXAMPLE

a(3) = 10 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we have for case 0 {{},{1}}, {{},{2}}, {{},{3}}, {{},{1,2}}, {{},{1,3}}, {{},{2,3}}, {{},{1,2,3}} and we have for case 1 {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}.


MATHEMATICA

LinearRecurrence[{10, 35, 50, 24}, {0, 1, 3, 10}, 30] (* Harvey P. Dale, Dec 01 2017 *)


CROSSREFS

Cf. A000225, A032263.
Sequence in context: A096752 A293554 A211193 * A028417 A060311 A184947
Adjacent sequences: A134015 A134016 A134017 * A134019 A134020 A134021


KEYWORD

nonn,easy


AUTHOR

Ross La Haye, Jan 10 2008


EXTENSIONS

More terms from Harvey P. Dale, Dec 01 2017


STATUS

approved



