OFFSET
0,2
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. [Ross La Haye, Feb 22 2009]
Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
FORMULA
a(n) = (1/2)(4^n - 3^(n+1) + 5*2^n - 1) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,2) + 1.
G.f.: -(9*x^3-19*x^2+8*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x- 1)). [Colin Barker, Dec 10 2012]
EXAMPLE
a(3) = 11 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we have for case 0 {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}} and we have for case 1 {{},{}}, {{1},{1}}, {{2},{2}}, {{3},{3}}, {{1,2},{1,2}}, {{1,3},{1,3}}, {{2,3},{2,3}}, {{1,2,3},{1,2,3}}.
MATHEMATICA
Table[3 StirlingS2[n + 1, 4] + StirlingS2[n + 1, 2] + 1, {n, 0, 27}] (* Michael De Vlieger, Nov 30 2015 *)
PROG
(PARI) a(n) = (4^n - 3^(n+1) + 5*2^n - 1)/2; \\ Michel Marcus, Nov 30 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ross La Haye, Jan 10 2008
EXTENSIONS
More terms from Michael De Vlieger, Nov 30 2015
STATUS
approved