login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293554
a(n) = [x^n] exp(Sum_{k>=1} x^k/(k*(1 - x^k)^n)).
7
1, 1, 3, 10, 45, 216, 1232, 7624, 52215, 385495, 3056680, 25825669, 231503636, 2191866327, 21835650219, 228089127908, 2490775088645, 28362322146780, 336015253520857, 4133561828779865, 52705520063966840, 695406327616587268, 9480212057583970983
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^binomial(n+k-2,n-1).
a(n) = A293551(n,n).
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
binomial(d+k-2, k-1), d=divisors(j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 17 2017
MATHEMATICA
Table[SeriesCoefficient[E^(Sum[x^k/(k (1 - x^k)^n), {k, 1, n}]), {x, 0, n}], {n, 0, 22}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 22}]
CROSSREFS
Main diagonal of A293551.
Sequence in context: A247053 A102911 A096752 * A346066 A211193 A134018
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2017
STATUS
approved