login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211193
E.g.f.: exp((1+x)^(1+x)-1).
1
1, 1, 3, 10, 45, 221, 1315, 8324, 60809, 464113, 3993811, 35342814, 349085869, 3486862653, 38870528411, 429139127416, 5345350992113, 63994963427393, 887692696733827, 11284513262684914, 175285847038616301, 2298693217837384957, 40805829165456572691
OFFSET
0,3
COMMENTS
Note that for odd n >= 31, a(n) is negative! - Vaclav Kotesovec, Feb 13 2013
Conjecture: For n > 1, a(n) == 1 (mod n). - Mélika Tebni, Aug 22 2021
LINKS
FORMULA
E.g.f.: exp((1+x)^(1+x)-1).
a(n) ~ (n-2)! if n is even and a(n) ~ -(n-2)! if n is odd. - Vaclav Kotesovec, Feb 13 2013
a(n) = Sum_{k=1..n} Bell(k)*A008296(n, k) for n >= 1. - Mélika Tebni, Aug 22 2021
MAPLE
egf:= exp((1+x)^(1+x)-1);
a:= n-> n!*coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
# second program: uses Lehmer-Comtet A008296.
A211193:= n-> add(combinat[bell](k)*A008296(n, k), k=1..n): A211193(0):=1:
seq(A211193(n), n=0..15); # Mélika Tebni, Aug 22 2021
MATHEMATICA
Range[0, 22]! CoefficientList[ Series[ Exp[(1 + x)^(1 + x)], {x, 0, 22}], x]/E
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp((1+x)^(1+x)-1))) \\ Joerg Arndt, Nov 30 2014
CROSSREFS
Sequence in context: A096752 A293554 A346066 * A134018 A355719 A028417
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Feb 03 2013
STATUS
approved