login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211195 a(n) = 2*Sum_{k=0..n-1} {[x^k] A(x)^(n-k)} * {[x^(n-k-1)] A(x)^(k+1)/(k+1)} for n>0, with a(0)=1, where g.f. A(x) = Sum_{n>=0} a(n)*x^n. 1
1, 2, 6, 32, 240, 2232, 24080, 290048, 3809088, 53691840, 803569184, 12670027776, 209244552192, 3603569846912, 64493380379520, 1196207964360704, 22942371004144640, 454160262238341120, 9265017815023565312, 194524772488764702720, 4198521645139971459072 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + 2*B(x*G(x)) where B(x) is the g.f. of A211196 such that B'(x) = A(x) and G(x) = A(x*G(x)) so that G(x) = Series_Reversion(x/A(x))/x. - Paul D. Hanna, Nov 21 2013
a(n) is divisible by (n+1); A211196(n+1) = a(n)/(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 32*x^3 + 240*x^4 + 2232*x^5 + 24080*x^6 +...
The table of coefficients in A(x)^n begins:
n=1: [1, 2, 6, 32, 240, 2232, 24080, 290048, 3809088, ...];
n=2: [1, 4, 16, 88, 644, 5808, 60992, 718560, 9267776, ...];
n=3: [1, 6, 30, 176, 1284, 11328, 116136, 1339200, 16962240, ...];
n=4: [1, 8, 48, 304, 2248, 19584, 196800, 2224256, 27672720, ...];
n=5: [1, 10, 70, 480, 3640, 31592, 312640, 3470080, 42432080, ...];
n=6: [1, 12, 96, 712, 5580, 48624, 476224, 5203680, 62599152, ...];
n=7: [1, 14, 126, 1008, 8204, 72240, 703640, 7590592, 89949552, ...]; ...
where a(n) is obtained from the antidiagonals in the above table like so:
a(1) = 2*(1*1/1);
a(2) = 2*(1*2/1 + 2*1/2);
a(3) = 2*(1*6/1 + 4*4/2 + 6*1/3);
a(4) = 2*(1*32/1 + 6*16/2 + 16*6/3 + 32*1/4);
a(5) = 2*(1*240/1 + 8*88/2 + 30*30/3 + 88*8/4 + 240*1/5);
a(6) = 2*(1*2232/1 + 10*644/2 + 48*176/3 + 176*48/4 + 644*10/5 + 2232*1/6);
a(7) = 2*(1*24080/1 + 12*5808/2 + 70*1284/3 + 304*304/4 + 1284*70/5 + 5808*12/6 + 24080*1/7); ...
PROG
(PARI) a(n)=local(A=1 + sum(j=1, n-1, a(j)*x^j)+x*O(x^n)); if(n==0, 1, 2*sum(k=0, n-1, polcoeff(A^(n-k), k)*polcoeff(A^(k+1)/(k+1), n-k-1)))
for(n=0, 25, print1(a(n), ", "))
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+2*subst(intformal(A), x, serreverse(x/A +x*O(x^n)))); polcoeff(A, n)
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 21 2013
CROSSREFS
Sequence in context: A009686 A012318 A012521 * A346452 A012324 A121676
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 12:56 EST 2023. Contains 367656 sequences. (Running on oeis4.)