login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211195
a(n) = 2*Sum_{k=0..n-1} {[x^k] A(x)^(n-k)} * {[x^(n-k-1)] A(x)^(k+1)/(k+1)} for n>0, with a(0)=1, where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
1
1, 2, 6, 32, 240, 2232, 24080, 290048, 3809088, 53691840, 803569184, 12670027776, 209244552192, 3603569846912, 64493380379520, 1196207964360704, 22942371004144640, 454160262238341120, 9265017815023565312, 194524772488764702720, 4198521645139971459072
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = 1 + 2*B(x*G(x)) where B(x) is the g.f. of A211196 such that B'(x) = A(x) and G(x) = A(x*G(x)) so that G(x) = Series_Reversion(x/A(x))/x. - Paul D. Hanna, Nov 21 2013
a(n) is divisible by (n+1); A211196(n+1) = a(n)/(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 32*x^3 + 240*x^4 + 2232*x^5 + 24080*x^6 +...
The table of coefficients in A(x)^n begins:
n=1: [1, 2, 6, 32, 240, 2232, 24080, 290048, 3809088, ...];
n=2: [1, 4, 16, 88, 644, 5808, 60992, 718560, 9267776, ...];
n=3: [1, 6, 30, 176, 1284, 11328, 116136, 1339200, 16962240, ...];
n=4: [1, 8, 48, 304, 2248, 19584, 196800, 2224256, 27672720, ...];
n=5: [1, 10, 70, 480, 3640, 31592, 312640, 3470080, 42432080, ...];
n=6: [1, 12, 96, 712, 5580, 48624, 476224, 5203680, 62599152, ...];
n=7: [1, 14, 126, 1008, 8204, 72240, 703640, 7590592, 89949552, ...]; ...
where a(n) is obtained from the antidiagonals in the above table like so:
a(1) = 2*(1*1/1);
a(2) = 2*(1*2/1 + 2*1/2);
a(3) = 2*(1*6/1 + 4*4/2 + 6*1/3);
a(4) = 2*(1*32/1 + 6*16/2 + 16*6/3 + 32*1/4);
a(5) = 2*(1*240/1 + 8*88/2 + 30*30/3 + 88*8/4 + 240*1/5);
a(6) = 2*(1*2232/1 + 10*644/2 + 48*176/3 + 176*48/4 + 644*10/5 + 2232*1/6);
a(7) = 2*(1*24080/1 + 12*5808/2 + 70*1284/3 + 304*304/4 + 1284*70/5 + 5808*12/6 + 24080*1/7); ...
PROG
(PARI) a(n)=local(A=1 + sum(j=1, n-1, a(j)*x^j)+x*O(x^n)); if(n==0, 1, 2*sum(k=0, n-1, polcoeff(A^(n-k), k)*polcoeff(A^(k+1)/(k+1), n-k-1)))
for(n=0, 25, print1(a(n), ", "))
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+2*subst(intformal(A), x, serreverse(x/A +x*O(x^n)))); polcoeff(A, n)
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 21 2013
CROSSREFS
Sequence in context: A009686 A012318 A012521 * A346452 A012324 A121676
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2013
STATUS
approved