login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211192
Consider all distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways; sequence gives difference between numbers of f with f(0)=1 and numbers of f with f(0)=0, with conventions that 0^0=1^0=1^1=1, 0^1=0.
7
0, -1, 1, 0, 2, 1, 8, 10, 39, 72, 225, 506, 1434, 3550, 9767, 25391, 69293, 185061, 505843, 1372744, 3769842, 10339104, 28546539, 78890525, 218945822, 608657861, 1697106780, 4740593393, 13272626627, 37224982494, 104599603493, 294384019508, 829836855332
OFFSET
0,5
COMMENTS
A000081(n) distinct functions are representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(n-1) for n>0.
FORMULA
a(n) = A222380(n) - A222379(n).
From Alois P. Heinz, Mar 01 2019: (Start)
a(n) is even <=> n in { A258592 }.
a(n) is odd <=> n in { A263831 }. (End)
EXAMPLE
There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)). Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Three functions evaluate to 1 at x=0: ((0^0)^0)^0 = (1^0)^0 = 1^0 = 1, (0^0)^(0^0) = 1^1 = 1, 0^(0^(0^0)) = 0^(0^1) = 0^0 = 1. Thus a(4) = 3-1 = 2.
a(8) = A222380(8) - A222379(8) = 77 - 38 = 39.
MAPLE
g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
end:
a:= n-> (f-> f[1]-f[2])(g(n-1$2)):
seq(a(n), n=0..40);
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, {0, 1}, If[i<1, {0, 0}, ({#[[1]]-#[[2]], #[[2]]}&)[Sum[Function[{l, h}, {(h[[1]]+h[[2]])*Binomial[j+l[[1]]+l[[2]] -1, j], h[[2]]*Binomial[j+l[[1]]-1, j]}][g[i-1, i-1]], g[n-i*j, i-1]]], {j, 0, Quotient[n, i]}]];
a[n_] := (#[[1]]-#[[2]]&)[g[n-1, n-1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
KEYWORD
sign
AUTHOR
Alois P. Heinz, Feb 18 2013
STATUS
approved