login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306668
Difference between numbers of binary bracketings of 0^0^...^0 with n 0's giving the result 1 and those giving the result 0, with conventions that 0^0=1^0=1^1=1, 0^1=0.
4
0, -1, 1, 0, 3, 4, 20, 50, 189, 588, 2100, 7116, 25344, 89298, 321178, 1156298, 4206059, 15356796, 56424836, 208137800, 771229684, 2867771004, 10700980956, 40050890172, 150328400292, 565699287186, 2133889856550, 8067040670100, 30559571239890, 115986196679730
OFFSET
0,5
COMMENTS
The total number of binary bracketings of 0^0^...^0 with n 0's is A000108(n-1) for n > 0.
LINKS
Eric Weisstein's World of Mathematics, Binary Bracketing
FORMULA
a(n) = A111160(n-1) - A055113(n) for n > 0.
a(n) is odd <=> n in { A000079 }.
EXAMPLE
There are A000108(3) = 5 binary bracketings of 0^0^0^0: ((0^0)^0)^0, (0^0)^(0^0), (0^(0^0))^0, 0^((0^0)^0), 0^(0^(0^0)). Only 0^((0^0)^0) evaluates to 0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. The four other bracketings evaluate to 1. Thus a(4) = 4-1 = 3.
MAPLE
b:= proc(n) option remember; `if`(n<2, [n, 0], add(((f, g)-> [f[1]*g[2],
f[1]*g[1] +f[2]*g[1] +f[2]*g[2]])(b(i), b(n-i)), i=1..n-1))
end:
a:= n-> (v-> v[2]-v[1])(b(n)):
seq(a(n), n=0..29);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, -n, ((35*n^3-147*n^2+220*n-120)*
a(n-1)+18*(n-2)*(5*n-6)*(2*n-5)*a(n-2))/((2*(5*n-11))*(2*n-1)*n))
end:
seq(a(n), n=0..29);
MATHEMATICA
a[n_] := a[n] = If[n<2, -n, ((35n^3 - 147n^2 + 220n - 120) a[n-1] + 18(n-2) (5n - 6)(2n - 5) a[n-2])/((2(5n - 11))(2n - 1)n)];
a /@ Range[0, 29] (* Jean-François Alcover, Apr 02 2021, after 2nd Maple program *)
CROSSREFS
KEYWORD
sign
AUTHOR
Alois P. Heinz, Mar 04 2019
STATUS
approved