login
A056038
Largest factorial k! such that (k!)^2 divides n!.
5
1, 1, 1, 1, 2, 2, 6, 6, 24, 24, 720, 720, 720, 720, 5040, 5040, 40320, 40320, 362880, 362880, 3628800, 3628800, 39916800, 39916800, 479001600, 479001600, 6227020800, 6227020800, 1307674368000, 1307674368000, 1307674368000, 1307674368000, 20922789888000
OFFSET
0,5
COMMENTS
This is neither floor(n/2)! nor ceiling(n/2)!, but often coincides with one of them.
a(n) = k!, where k = floor(n/2) + d(n) and d = 0, 1, 2, ... . Below 1000, d = 1 arises 93 times, and d = 2 arises 4 times. See A056067 and A056068.
FORMULA
a(n)^2 = A105350(n).
EXAMPLE
For n = 10 or n = 11, floor(n/2)! = 5! = 120; 5!^2 = 14400 divides 10! = 14400*252 or 11! = 14400*2772. However, 10!/6!^2 = 7 and 11!/6!^2 = 77, i.e., (d + floor(n/2))^2 may divide n!. Here d = 1, but d > 1 also occurs as follows: for n = 416 or n = 417, floor(n/2) = 208, and 208!^2 divides 416! and 417!, but 209!^2 and 210!^2 also divide these factorials.
MATHEMATICA
a[n_] := Module[{k = 1}, NestWhile[#/(++k)^2 &, n!, IntegerQ]; (k-1)!]; Array[a, 33, 0] (* Amiram Eldar, May 24 2024 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 25 2000
STATUS
approved