login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265642
Number of binary strings of length n that can be written as the concatenation of nontrivial powers of other strings.
1
0, 2, 2, 6, 6, 26, 24, 94, 118, 340, 464, 1298, 1842, 4860, 7448, 18188, 29344, 68900, 114638, 260558, 447954, 986664, 1739736, 3746824, 6732712, 14241630, 26009968, 54182570, 100266862, 206375170, 385891332, 786632426, 1483493024, 3000203428, 5697403240
OFFSET
1,2
FORMULA
a(n) = 2^n - A265639(n).
EXAMPLE
For n = 5, the 6 strings are 00000,00011,00111,11000,11100,11111.
MAPLE
Negate:= proc(S) StringTools:-Map(procname, S) end proc:
Negate("0"):= "1":
Negate("1"):= "0":
FC:= proc(n)
# set of binary strings of length n starting with 0 that are concatenations
# of nontrivial powers
option remember;
local m, s, t;
{seq(seq(seq(cat(s, t), s=FC1(m)), t=map(r -> (r, Negate(r)),
procname(n-m))), m=2..n-2)} union FC1(n)
end proc:
FC(2):= {"00"}:
FC1:= proc(n)
# set of nontrivial powers of length n starting with 0
option remember;
local d, s;
{seq(seq(cat(s$d), s = S0(n/d)), d = numtheory:-divisors(n) minus {1})}
end proc:
S0:= proc(n)
# set of binary strings of length n starting with 0
map(t -> cat("0", t), convert(StringTools:-Generate(n-1, "01"), set))
end proc:
seq(2*nops(FC(n)), n=1..22); # Robert Israel, Dec 11 2015
CROSSREFS
Cf. A265639.
Sequence in context: A081123 A056038 A076929 * A186944 A247525 A305295
KEYWORD
nonn,base
AUTHOR
Jeffrey Shallit, Dec 11 2015
EXTENSIONS
a(17)-a(25) from Robert Israel, Dec 11 2015
a(26)-a(35) from Lars Blomberg, Dec 20 2015
STATUS
approved