login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247525
a(n) = 5 * a(n-1) - 2 * a(n-1)^2 / a(n-2), with a(0) = 1, a(1) = 2.
1
1, 2, 2, 6, -6, -42, 378, 8694, -356454, -31011498, 5240943162, 1797643504566, -1224195226609446, -1673474874775112682, 4566912933261282509178, 24949045354406386347639414, -272468524315472145302570040294, -5952619850720119958425247670303018
OFFSET
0,2
LINKS
FORMULA
0 = a(n)*(-5*a(n+1) + a(n+2)) + a(n+1)*(+2*a(n+1)) for all n in Z.
a(n+1) = a(n) * A140966(n) for all n in Z.
MATHEMATICA
RecurrenceTable[{a[n] == 5*a[n - 1] - 2*a[n - 1]^2/a[n - 2], a[0] == 1, a[1] == 2}, a, {n, 0, 50}] (* G. C. Greubel, Aug 05 2018 *)
PROG
(PARI) {a(n) = if( n<0, 1 / prod(k=1, -n, (5 + (-2)^-k) / 3), prod(k=0, n-1, (5 + (-2)^k) / 3))};
(Magma) I:=[1, 2]; [n le 2 select I[n] else 5*Self(n-1) - 2*Self(n-1)^2/Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 05 2018
CROSSREFS
Cf. A140966.
Sequence in context: A076929 A265642 A186944 * A305295 A174789 A210865
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2014
STATUS
approved