login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052614
E.g.f. 1/((1-x)(1-x^4)).
0
1, 1, 2, 6, 48, 240, 1440, 10080, 120960, 1088640, 10886400, 119750400, 1916006400, 24908083200, 348713164800, 5230697472000, 104613949440000, 1778437140480000, 32011868528640000, 608225502044160000
OFFSET
0,3
FORMULA
E.g.f.: 1/(-1+x)/(-1+x^4)
Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, (-61*n-11*n^3-n^4-30-41*n^2)*a(n) +(-n^2-5*n-6)*a(n+1) +(-n-3)*a(n+2) +a(n+4) -a(n+3)=0}
(Sum(1/16*(2*_alpha+_alpha^2-1)*_alpha^(-1-n), _alpha=RootOf(1+_Z+_Z^2+_Z^3))+1/4*n+5/8)*n!
n!*[n/4+1].
a(n)=n!*A008621(n). - R. J. Mathar, Jun 03 2022
MAPLE
spec := [S, {S=Prod(Sequence(Z), Sequence(Prod(Z, Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/((1-x)(1-x^4)), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 30 2013 *)
CROSSREFS
Sequence in context: A344676 A098710 A337907 * A052688 A052657 A230714
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved