login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052616
Expansion of e.g.f. (3+2*x)/(1-x^2).
2
3, 2, 6, 12, 72, 240, 2160, 10080, 120960, 725760, 10886400, 79833600, 1437004800, 12454041600, 261534873600, 2615348736000, 62768369664000, 711374856192000, 19207121117184000, 243290200817664000, 7298706024529920000, 102181884343418880000, 3372002183332823040000
OFFSET
0,1
FORMULA
E.g.f.: (2*x+3)/(1-x^2).
Recurrence: {a(1)=2, a(0)=3, (-2-n^2-3*n)*a(n) + a(n+2) = 0}.
a(n) = Sum(1/2*(3*_alpha+2)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^2))*n!.
a(n) = 3n! if n is even, 2n! otherwise.
a(n) = n!*A176059(n). - R. J. Mathar, Jun 03 2022
Sum_{n>=0} 1/a(n) = (5*e^2-1)/(12*e) = cosh(1)/3 + sinh(1)/2. - Amiram Eldar, Feb 02 2023
MAPLE
spec := [S, {S=Union(Sequence(Z), Sequence(Z), Sequence(Prod(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(3+2x)/(1-x^2), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 12 2021 *)
CROSSREFS
Cf. A176059.
Sequence in context: A188621 A175182 A291221 * A091461 A078091 A073883
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved