login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337907
The number of walks of n steps on the hexagonal lattice that start at the origin and end at the non-adjacent vertex (3/2,sqrt(3)/2).
3
2, 6, 48, 220, 1320, 6930, 39200, 215208, 1208340, 6754440, 38076192, 214939296, 1218641424, 6925848930, 39477746880, 225542306704, 1291514481972, 7410367503396, 42599109627360, 245305128355560, 1414839151645920, 8172376003368720, 47270088643265280, 273766119948648000
OFFSET
2,1
FORMULA
D-finite with recurrence -(n-2)*(n+3)*(n+2)*(n+1)*a(n) +n*(n+2)*(n^2+n+12)*a(n-1) +24*n*(n-1)*(n^2+3*n-1)*a(n-2) +36*n*(n-1)*(n-2)*(n+4)*a(n-3)=0.
EXAMPLE
There are a(2)=2 paths with 2 steps: RU and UR, where R=(1,0), L=(-1,0), U=(1/2,sqrt(3)/2), u=(-1/2,sqrt(3)/2), D=(1/2,-sqrt(3)/2), d=(-1/2,-sqrt(3)/2).
There are a(3)=6 paths with 3 steps: UUD, UDU, DUU, RRu, RuR, uRR.
MAPLE
# see A337905
CROSSREFS
Cf. A002898 (returns to origin), A337905, A337906.
Sequence in context: A052596 A344676 A098710 * A052614 A052688 A052657
KEYWORD
nonn,walk
AUTHOR
R. J. Mathar, Sep 29 2020
STATUS
approved