login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271961
G.f. A(x) satisfies: A( 4*A(x)^2 - 16*A(x)^3 ) = 4*x^2.
6
1, 2, 6, 48, 350, 2624, 19788, 164352, 1375222, 11676672, 100528724, 879042560, 7766216812, 69183897600, 621144540056, 5617045733376, 51099366332838, 467284485996544, 4293452339931012, 39617950774198272, 366977680831584068, 3411064524143329280, 31806303401026218792, 297435647894402105344, 2788846295384191083196, 26212988486868078166016, 246938491597204310266696
OFFSET
1,2
LINKS
FORMULA
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
(1) 4*B(x)^2 = A( 4*x^2 - 16*x^3 ),
(2) B(4*x^2) = 4*A(x)^2 - 16*A(x)^3,
(3) B(4*B(x)^2) = 4*x^2 - 16*x^3.
a(n) ~ c * d^n / n^(3/2), where d = 9.97390550579080951... and c = 0.0367046946616235... - Vaclav Kotesovec, Aug 28 2017
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 48*x^4 + 350*x^5 + 2624*x^6 + 19788*x^7 + 164352*x^8 + 1375222*x^9 + 11676672*x^10 + 100528724*x^11 +...
where A( 4*A(x)^2 - 16*A(x)^3 ) = 4*x^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 120*x^5 + 928*x^6 + 7224*x^7 + 56576*x^8 + 472944*x^9 + 4019712*x^10 + 34562904*x^11 + 300781568*x^12 +...
A(x)^3 = x^3 + 6*x^4 + 30*x^5 + 224*x^6 + 1806*x^7 + 14592*x^8 + 118236*x^9 + 1001472*x^10 + 8640726*x^11 + 75300864*x^12 +...
Note that 4*A(x)^2 - 16*A(x)^3 is an even function:
4*A(x)^2 - 16*A(x)^3 = 4*x^2 - 32*x^4 + 128*x^6 - 7168*x^8 + 55296*x^10 - 1687552*x^12 + 41222144*x^14 - 1329070080*x^16 +...
Let B(x) be the series reversion of g.f. A(x) such that A(B(x)) = x, then
B(x) = x - 2*x^2 + 2*x^3 - 28*x^4 + 54*x^5 - 412*x^6 + 2516*x^7 - 20280*x^8 + 133670*x^9 - 888620*x^10 + 6071548*x^11 - 41120904*x^12 +...
such that 4*B(x)^2 = A(4*x^2 - 16*x^3) and B(4*x^2) = 4*A(x)^2 - 16*A(x)^3.
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -Vec(subst(F, x, 4*F^2 - 16*F^3))[#A]/8); A[n]}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x); for(i=0, n, A = serreverse(sqrt(subst(A/4, x, 4*x^2 - 16*x^3 + x^2*O(x^n))))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 11 2017
CROSSREFS
Sequence in context: A230714 A092143 A281027 * A362798 A239836 A052593
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 21 2016
STATUS
approved