login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284938 Triangle read by rows: coefficients of the edge cover polynomial for the n-path graph P_n. 4
0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,14

LINKS

Table of n, a(n) for n=1..105.

Eric Weisstein's World of Mathematics, Edge Cover Polynomial

Eric Weisstein's World of Mathematics, Path Graph

FORMULA

a(n) = abs(A057094(n)).

EXAMPLE

0;

0,1;

0,0,1;

0,0,1,1;

0,0,0,2,1;

0,0,0,1,3,1;

0,0,0,0,3,4,1;

0,0,0,0,1,6,5,1;

0,0,0,0,0,4,10,6,1;

0,0,0,0,0,1,10,15,7,1;

0,0,0,0,0,0,5,20,21,8,1;

0,0,0,0,0,0,1,15,35,28,9,1;

0,0,0,0,0,0,0,6,35,56,36,10,1;

0,0,0,0,0,0,0,1,21,70,84,45,11,1;

...

MATHEMATICA

Prepend[CoefficientList[Table[x^(n/2) Fibonacci[n - 1, Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)

Prepend[CoefficientList[LinearRecurrence[{x, x}, {0, x}, {2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)

CROSSREFS

Unsigned version of A057094.

Row sums are A000045(n-1).

Cf. A286912, A258993, A030528, A085478, A098925, A102426, A143858, etc.

Sequence in context: A292136 A032239 A057094 * A186084 A301345 A047998

Adjacent sequences:  A284935 A284936 A284937 * A284939 A284940 A284941

KEYWORD

nonn,tabl,easy

AUTHOR

Eric W. Weisstein, Apr 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 22:08 EDT 2022. Contains 354122 sequences. (Running on oeis4.)