OFFSET
1,4
COMMENTS
The rationals r(n)=2*n*e(n-1)/e(n), where e(n)=A000111(n), approximate Pi as n -> oo. - M. F. Hasler, Apr 03 2013
Numerators are given in A132049.
See the Delahaye reference and a link by W. Lang given in A132049.
From Paul Curtz, Mar 17 2013: (Start)
1, 1/2, 0, -1/4, -1/4, -1/8, 0, 1/16, 1/16;
1/2, 1, 3/4, 0, -5/8, -3/4, -7/16, 0; = Balmer0(n)
-1/2, 1/2, 9/4, 5/2, 5/8, -15/8, -49/16;
-1, -7/2, -3/4, 15/2, 25/2, 57/8;
5/2, -11/2, -99/4, -20, 215/8;
8, 77/2, -57/4, -375/2;
-61/2, 211/2, 2079/4;
-136, -1657/2;
1385/2;
The first column is PIEULER(n) = 1, 1/2, -1/2, -1, 5/2, 8, -61/2, -136, 1385/2,... = c(n)/d(n). Abs c(n+1)=1,1,1,5,8,61,... =a(n) with offset=1.
Other completely unrelated rational approximations of Pi are given by A063674/A063673 and other references there. - M. F. Hasler, Apr 03 2013
FORMULA
a(n)=denominator(r(n)) with the rationals r(n):=2*n*e(n-1)/e(n) where e(n):=A000111(n).
EXAMPLE
Rationals r(n): [2, 4, 3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
MATHEMATICA
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1)*(2^(n + 1) - 1)*BernoulliB[n + 1])/(n + 1)]]; r[n_] := 2*n*(e[n - 1]/e[n]); a[n_] := Denominator[r[n]]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Mar 26 2013 *)
PROG
(Python)
from itertools import count, islice, accumulate
from fractions import Fraction
def A132050_gen(): # generator of terms
yield 1
blist = (0, 1)
for n in count(2):
yield Fraction(2*n*blist[-1], (blist:=tuple(accumulate(reversed(blist), initial=0)))[-1]).denominator
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 14 2007
EXTENSIONS
Definition made more explicit, and initial terms a(1)=a(2)=1 added by M. F. Hasler, Apr 03 2013
STATUS
approved