

A063674


Numerators of increasingly better rational approximations to Pi with increasing denominators (3/1, 13/4, 16/5, 19/6, 22/7, 179/57, ...)


5



3, 13, 16, 19, 22, 179, 201, 223, 245, 267, 289, 311, 333, 355, 52163, 52518, 52873, 53228, 53583, 53938, 54293, 54648, 55003, 55358, 55713, 56068, 56423, 56778, 57133, 57488, 57843, 58198, 58553, 58908, 59263, 59618, 59973, 60328, 60683, 61038, 61393, 61748
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numerators of the sequence (3/1, 13/4, 16/5, 19/6, 22/7, 179/57, 201/64, 223/71, 245/78, 267/85, 289/92, 311/99, 333/106, 355/113, 52163/16604, 52518/16717, ...)
Large jumps occur after the classical approximations 22/7 and 355/113, which are sufficiently precise to require a much larger denominator for a better approximation.  M. F. Hasler, Apr 01 2013


LINKS

P. D. Howard, Table of n, a(n) for n = 1..18865
JeanLouis Sikorav, Best rational approximations of an irrational number, arXiv:1807.06284 [math.NT], 2018.


MATHEMATICA

piapprox[n_] := Block[{a, i}, a = {3/1}; For[i = 2, i <= n, i++, If[Abs[Round[i Pi]/i  Pi] < Abs[Last[a]  Pi], AppendTo[a, Round[i Pi]/i], Null]]; Return[a]] (* Suren Fernando via Alexander R. Povolotsky, Aug 03 2008 *)


PROG

(PARI) {e=1; for(d=1, 1e5, abs( Piround(Pi*d)/d ) < e & !print1(round(Pi*d)", ") & e=abs(Pi  round(Pi*d)/d))} \\ [M. F. Hasler, Apr 01 2013]


CROSSREFS

Cf. A063673 (denominators), A057082, A002485/A002486, A132049/A132050, A072398/A072399.
Sequence in context: A216044 A023144 A152269 * A273678 A022124 A042133
Adjacent sequences: A063671 A063672 A063673 * A063675 A063676 A063677


KEYWORD

frac,nonn


AUTHOR

Suren L. Fernando (fernando(AT)truman.edu), Jul 27 2001


EXTENSIONS

More terms from M. F. Hasler, Apr 01 2013


STATUS

approved



