Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Oct 28 2022 09:55:19
%S 1,1,2,3,24,20,720,630,4480,36288,3628800,3326400,479001600,444787200,
%T 5811886080,81729648000,20922789888000,19760412672000,
%U 6402373705728000,6082255020441600,115852476579840000,2322315553259520000
%N a(n) = numerator(n!/n^2).
%C Numerator of expansion of dilog(x) = Li_2(x) = -Integral_{t=0..x} (log(1-t)/t)*dt. See the Weisstein link.
%C E.g.f. of {a(n)/A014973(n)}_{n>=1} is Li_2(x) (with 0 for n=0).
%H Vincenzo Librandi, <a href="/A092043/b092043.txt">Table of n, a(n) for n = 1..200</a>
%H A. N. Kirillov, <a href="http://arXiv.org/abs/hep-th/9408113">Dilogarithm identities</a>, arXiv:hep-th/9408113, 1994.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Dilogarithm.html">Dilogarithm</a>
%F From _Wolfdieter Lang_, Apr 28 2017: (Start)
%F a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
%F E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
%F (-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
%F From _Wolfdieter Lang_, Oct 26 2022: (Start)
%F a(n) = (n-1)!/gcd(n,(n-1)!) = A000142(n-1)/A181569(n-1), n >= 1.
%F The expansion of (1+x)*exp(x) has coefficients A014973(n+1)/a(n+1), for n >= 0. (End)
%t Table[Numerator[n!/n^2], {n, 1, 40}] (* _Vincenzo Librandi_, Apr 15 2014 *)
%t Table[(n-1)!/n,{n,30}]//Numerator (* _Harvey P. Dale_, Apr 03 2018 *)
%o (PARI) a(n)=numerator(n!/n^2)
%o (PARI) a(n)=numerator(polcoeff(serlaplace(dilog(x)),n))
%o (Magma) [Numerator(Factorial(n)/n^2): n in [1..30]]; // _Vincenzo Librandi_, Apr 15 2014
%Y Denominator is in A014973.
%Y Cf. A000142, A001819, A181569.
%K nonn,easy,frac
%O 1,3
%A _Ralf Stephan_, Mar 28 2004
%E Comment rewritten by _Wolfdieter Lang_, Apr 28 2017